COLLEGE OF EDUCATION FOR PURE SCIENCES

DEPARTMENT OF CHEMISTRY FIRST YEAR LECTURE N0. 4 Dr.LUMA.T.ALbaaj

Questions and solutions in concentration and \%

Q1 \backslash Asaturated solution of potassium chloride in $20 \mathrm{c}^{0}$.
Calculate $\% \mathrm{w} \backslash \mathrm{w}$ and (M) concentration if it contains $298 \mathrm{~g} / \mathrm{l}$ and $\quad \mathrm{D}=1.17 \mathrm{~g} / \mathrm{cm}^{3}$.

Notice/ At.wt= K=39, Cl=35.5,

$$
\text { M.wt }{ }_{\mathrm{kcl}}=39 \times 1+35.5 \times 1=74.5 \mathrm{~g} / \mathrm{mole} .
$$

$$
\mathrm{D}=\frac{w}{v} \quad \longrightarrow \mathrm{w} \text { of solvent }=\mathrm{D} \times \mathrm{v}=1.17 \mathrm{~g} / \mathrm{cm}^{3} \times 1000 \mathrm{~cm}^{3}
$$

W of solution $=1170 \mathrm{~g}$
$\% w / w=\frac{298}{1170} \times 100=25.47 \%$

$$
\mathrm{M}=\frac{w}{M \cdot w t} \times \frac{1000}{v m l}=
$$

$$
\mathrm{M}=\frac{298}{74.5} X \frac{1000}{1000}=4 \mathrm{~mole} / \mathrm{L}
$$

Q2/ What water weight is required to disolve 10 grams of sodium chloride to obtain asolution of equal weight 8.0\%

$$
\% \mathrm{w} / \mathrm{w}=\frac{w t \text { of solute }}{w t \text { of solvent }+w t \text { of solute }} \times 100 \%
$$

$8.0 \%=\frac{10}{10+x} \times 100 \%=$
$80+8 x=1000 \longrightarrow 8 x=1000-80 \longrightarrow x=920 / 8=115 \mathrm{~g}$

Q3/ Calculate the Molarity and Normality of a solution containing 10.6 g of sodium carbonate in one liter of aqueous solution .AT.WT: $\mathrm{C}=12,0=16, \mathrm{Na}=23 \mathrm{~g} / \mathrm{mole}$
M.wt of $\mathrm{Na}_{2} \mathrm{CO}_{3}=23 \mathrm{X} 2+12 \mathrm{X} 1+16 \mathrm{X3}=106 \mathrm{~g} / \mathrm{mole}$.
$\mathrm{M}=\frac{w t}{M \cdot w t} x \frac{1000}{v m l}=$
$\mathrm{M}=\frac{10.6 \mathrm{~g}}{106 \mathrm{~g} / \mathrm{mole}} \times \frac{1000}{1000}=0.1 \mathrm{M}$
$\mathrm{N}=\frac{w t}{e q \cdot w t} X \frac{1000}{v(m l)}=$
*Eq. wt $=\frac{M \cdot w t}{n}=\frac{106}{2}=53 \mathrm{~g} / \mathrm{eq}$
$\mathrm{N}=\frac{10.6 g}{53 g / e q} x \frac{1000}{1000}=0.2 \mathrm{~N}$

(1) ${ }^{-}$

يمكن ايجاد التركيز النورمالتي من العلاقه التاليه:
$N=n . M$
$\mathrm{N}=2 \times 0.1=0.2$

Q4/ Calculate the number of grams of solute in
(a) 1 Liter of $0.2 \mathrm{~N} \mathrm{Ba}(\mathrm{OH})_{2}$ solution. At.wt $\mathrm{H}=1, \mathrm{O}=16$ $\mathrm{Ba}=137$.
Eq.wt $\mathrm{Ba}(\mathrm{OH})_{2}=\frac{M \cdot w t}{n}=\frac{137+(16 x 2+1 \times 2)}{2}=\frac{171}{2}=85.5$
g/eq

$$
\begin{aligned}
& \mathrm{N}=\frac{w t}{e q \cdot w t} X \frac{1000}{v(m l)}= \\
& \begin{aligned}
\mathrm{Wt} & =\mathrm{N} X \text { eq.wt } \times \frac{v}{1000}=\mathrm{N} X \text { eq.wt } \times \mathrm{v}(\mathrm{~L})= \\
& =0.2 \times 85.5 \times 1 \mathrm{~L}=17.14 \mathrm{~g} \text { of } \mathrm{Ba}(0 \mathrm{H})_{2}
\end{aligned}
\end{aligned}
$$

(b) 5 Liter of 0.2 N NaOH solution. At. $\mathrm{wt} ; \mathrm{H}=1,0$ $=16, \mathrm{Na}=23 \mathrm{~g} / \mathrm{mole}$.

Eq.wt $\mathrm{NaOH}=\frac{M \cdot w}{n}=\frac{23 x 1+16 \times 1+1 \times 1}{1}=40$
$\mathrm{N}=\frac{w t}{e q \cdot w t} X \frac{1000}{v(m l)}=$
$\mathrm{Wt}=\mathrm{NX}$ eq.wt $\times \mathrm{v}(\mathrm{L})=$

$$
W t=0.2 \times 40 \times 5 \mathrm{~L}=
$$

$\mathrm{Wt}=0.2 \times 40 \times 5=40 \mathrm{~g}$ of NaOH
(c) 2 Liter of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.At.wt; $\mathrm{H}=1,0=16, \mathrm{~S}=32$ $\mathrm{g} /$ mole.
M.wt $=2 \times 1+32 \times 1+16 \times 4=98 \mathrm{~g} / \mathrm{mole}$
$\mathrm{M}=\frac{w t}{M \cdot w t} X v(L)=$
Wt $\mathrm{g}=\mathrm{M} . \mathrm{M} . \mathrm{wt} . \mathrm{V}(\mathrm{L})=$

$$
\mathrm{Wt}=0.1 \mathrm{X} 98 \mathrm{X} 2 \mathrm{~L}=19.6 \mathrm{~g}
$$

Q5/ How many grams of 0.2 N sodium carbonate in 250 ml solution? (M.wt=106 g/mole)
Eq.. wt $\mathrm{Na}_{2} \mathrm{CO}_{3}=\quad \frac{M . \mathrm{w}}{n}=\frac{106}{2}=53 \mathrm{~g} / \mathrm{eq}$
$\mathrm{N}=\frac{w t}{e q \cdot w t} X \frac{1000}{v(m l)}=$
Wt $=\mathrm{N} \times$ Eq.wt $\times \frac{v(m l)}{1000}=$
$=0.2 \times 53 \times \frac{250}{1000}=2.650 \mathrm{~g}$

Q6/ Calculate the number of equivalent weights (3 mole $\mathrm{H}_{3} \mathrm{PO}_{4}$)
n. $E q=\Omega^{*} x \quad n=3 \times 3=9$

Q7/Calculate the normality (N) of solution result from dissolving 0.5 g of $\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{in} 100 \mathrm{ml}$ of D.W.distilled water.
At.wt/ Cu=63.5, $\mathrm{O}=16$, $\mathrm{H}=1$
M.wt cu(OH) $2=63.5+2 X 16+2 X 1=97.5 \mathrm{~g} / \mathrm{mole}$

Eq.wt $=\frac{M \cdot w t}{n}=\frac{97.5}{2}=48.75$
$\mathrm{N}=\frac{w t}{e q . w t} \times \frac{1000}{v(m l)}=$
$\mathrm{N}=\frac{0.5}{48.75} \times \frac{1000}{100}=0.1025 \mathrm{~N}$

Q8/ Calculate of solvent volume required to dissolved 20 g from potassium cyand KCN to make 0.3 M solution .

At.wt / K=39 ,C=12 ,N=14
$\mathrm{M}=\frac{w t}{M \cdot w t} \times V(L)=$
M.wt KCN = 39 X1 +12X1 +14 X1 = $65 \mathrm{~g} / \mathrm{mole}$.
$\mathrm{V}(\mathrm{L})=\frac{. w t}{M X M . w t}=\frac{20}{0.3 X 65}=1.02 \mathrm{~L}$.

Q9/How many ml of a 2.50 M NaOH solution are required to make 525 ml of a 0.15 M NaOH solution?

$$
\begin{aligned}
& \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
& 2.5 \times \mathrm{V}_{1}=0.15 \times 525 \\
& \mathrm{~V}_{1}=\frac{0.15 \times 525}{2.5}=31.5 \mathrm{ml}
\end{aligned}
$$

Q10/ Calculate of mole Fraction to Methanal 8.5g
dissolved in 224g disitled water .At.wt; $\mathrm{H}=1, \mathrm{C}=12,0=16$
Mole fraction $\mathrm{CH}_{3} \mathrm{OH}=\frac{\text { NO.of moles }(\mathrm{cH3OH})}{\text { NO.of mole(}(\mathrm{cH} 30 \mathrm{H})+\mathrm{NO} . \text { of } \operatorname{mole}(\mathrm{H} 2 \mathrm{O})}=$
No.of mole $(\mathrm{c} 3 \mathbf{O H})=\frac{W t}{M . w t}=\frac{8.5 \mathrm{~g}}{(12+4 X 1+16 \times 1)}=0.26 \mathrm{~mole}$
No. of $\operatorname{mole}\left({ }_{\mathrm{H} 2 \mathrm{O})}\right)=\frac{W t}{M . w t}=\frac{224 \mathrm{~g}}{(2 \times 1+16 \times 1)}=12.4 \mathrm{~mole}$.
${ }^{* * *}$ Mole fraction $\mathrm{CH} 3 \mathrm{OH}=\frac{0.26}{0.26+12.4}=0.02$

Q11/ What volume of $0.12 \mathrm{M}_{2} \mathrm{SO}_{4}$ must be added to exactly 500 ml of $0.09 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ obtain $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
$500 \times 0.09+V \times 0.12=0.1(V+500)$
$\mathrm{V}=250 \mathrm{ml}$.

Q12/ What weight of $14 \% \mathrm{w} / \mathrm{w}$ aqueous solution of substance B must be added to 35 g of $6 \% \mathrm{w} / \mathrm{w}$ aqueous solution of substance B to obtain $7 \% \mathrm{w} / \mathrm{w}$ solution

$$
\begin{aligned}
& w \times 0.14+35 \times 0.06=(35+w) \times 0.07 \\
& W=5 g \text { of } 14 \% w / w
\end{aligned}
$$

Q13/Calculate the number of moles and meli moles in;
(1) 5.76 gm potaissum iodate ;
At.wt;I =127 , K =39.

No.of moles $=\frac{w t k l}{M . w t ~ k l}=$ M.wt(KI) $=(39 \times 1)+(127 \times 1)=166$

No.of moles $=5.67 / 166=3.47 \times 10^{-2}$
NO. of mmole $=$ No of mole $\times 1000$

$$
=3.47 \times 10^{-2} \times 1000=34.7
$$

(2) 6 gm of acetic acid M.wt. $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=(12 \times 2)+(1 \times 4)+(16 \times 2)=60$ No.of moles=6.0/60=0.1
No.ofm moles $=0.1 \times 1000=100$
Q14/Prepare :
(1) 500 mililiter of 0.2 M from silver nitrate (salt) $\mathrm{M} . \mathrm{wt}\left(\mathrm{AgNO}_{3}\right)=(108 \mathrm{X} 1)+(14 \mathrm{X} 1)+(16 \mathrm{X} 3)=170$
$\mathrm{M}=\frac{w t}{M \cdot \omega t} \times \frac{1000}{v m l}$
Wt $=\mathrm{M} \quad$ X M.wt $\times \frac{v}{1000}=$
$\mathrm{Wt}=\left(0.2 \times 170 \times \frac{500}{1000}\right)=17 \mathrm{~g}$
يتم وزن 17 غرام من ملح نترات الفضنه واذابتها في 500 مل من
الماء المقطر .
(2) 2 Liter of 0.1 M from 0.5 M of solution
$M_{1} V_{1}=M_{2} V_{2}$
$0.5 \times \mathrm{V} 1=0.1 \times 2000$
$V_{1=}=0.1 \times 2000 / 0.5$
$\mathrm{V}_{1}=400 \mathrm{ml}$ (or) $\mathrm{V}_{1}=0.4 \mathrm{~L}$

Q15/The molecular weight of perchloric acid is 100.5 , the density is 1.6 , the percentage concentration is 70%

Calculate :
(1) Molar concentration of solution.

$$
\begin{aligned}
& M=\frac{10 X P X D}{M \cdot w t}= \\
& M=\frac{10 \times 70 \times 1.6}{100.5}=11.14 \text { mole } / \mathrm{L}
\end{aligned}
$$

(2) Nomber of grams of the acid in each liter ;

$$
\begin{gathered}
\mathrm{Wt}(\mathrm{~g})=\mathrm{M} \times \mathrm{M} . \mathrm{wt} \mathrm{xv}(\mathrm{~L})= \\
\mathrm{Wt}(\mathrm{~g})=11.14 \times 100.5 \times 1 \mathrm{~L}=1121 \mathrm{~g}
\end{gathered}
$$

Q16/ Calculate the number of grams of sodium chloride which used for preparing 500 ml of $0.85 \%(\mathrm{w} / \mathrm{v})$ solution.

$$
\begin{aligned}
\%(\mathrm{w} / \mathrm{v})=\frac{W t .(\mathrm{gm})}{V \cdot(\mathrm{ml})} & \times 100 \\
\mathrm{Wt.}(\mathrm{gm}) & =(\% \times \mathrm{V}) / 100 \\
& =(0.85 \times 500) / 100 \\
& =4.25 \mathrm{~g} .
\end{aligned}
$$

Q17/ How many grams of sodium chloride which used for preparing a solution of 100 ppm of sodium in 250 ml ?

100ppm $=100 \mathrm{mg} / \mathrm{L}$

$$
\begin{aligned}
100 \mathrm{ppm}_{\mathrm{Na}} & =0.1 \mathrm{gm} / \mathrm{L} \\
& =0.1 \times 250 / 1000 \\
& =0.025 \mathrm{gm} / 250 \mathrm{ml}
\end{aligned}
$$

اما باستخدام طرقة النسبه و التناسب:
Na
NaCl
M.wt

23
Wt 0.025
58.5

X
$X=0.0636 \mathrm{gm}$ of Nacl
او باستخدام القانون النتلي :

$$
\begin{aligned}
\mathrm{g} & =\mathrm{ppm} \times \frac{M \cdot w t}{A t \cdot w t}= \\
& =0.025 \times \frac{58.5}{23}=0.063 .
\end{aligned}
$$

Q18/Calculate the volume percentage concentration $(\% \mathrm{~V} / \mathrm{V})$ for solution of 50 ml of Ethanol in 200 ml distilled water?

Vol.of solution $=$ vol of solute + vol of solvent

$$
=50+200=250 \mathrm{ml}
$$

$$
\begin{aligned}
& \% \mathrm{~V} / \mathrm{V}=\frac{V \text { of solute }}{V . \text { of solution }} \mathrm{X} 100 \\
& \% \mathrm{~V} / \mathrm{V}=\frac{50}{250} \times 100=20 \% \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

Q19/Calculate the weight percentage concentration (\%w/w) for a solution which prepared by dissolving 5 grams of silver nitrate in 100 ml of distilled water?

D of water $=\frac{w t}{v .}$
wt of solvent $=D$ (solvent) $X V$

$$
=1.00 \times 100=100
$$

Wt of solution =wt of solvent + wt of solute

$$
=100+5=105
$$

$(\% \mathrm{w} / \mathrm{w})=\frac{w t . o f ~ s o l u t e}{w t . o f ~ s o l u t i o n} \times 100$
$(\% \mathrm{w} / \mathrm{w})=\frac{5 \mathrm{~g}}{105 \mathrm{~g}} \quad \mathrm{x} 100=4.76 \%$

Q20/ If the ratio of weight by volume (w / v) for a Glucose solution is 5%, Calculate the number of Glucose grams dissolved in a liter.

$$
\% \mathrm{~W} / \mathrm{v}=\frac{w t \text { of solute }}{\text { v.of solution }} \times 100
$$

Wt of solute $=\% \mathrm{w} / \mathrm{v} \times \mathrm{V}$.of solution /100

$$
=\frac{5 X 1000}{100}=50 \mathrm{~g} .
$$

Q21/1Liter solution of acetic acid containing 80 grams of the acid at $20 \mathrm{c}^{0}$, calculate the Molar , Normal , molali and the weight percantag concentration for the solution NOTE: the density of the acetic acid is $1.099 \mathrm{gm} / \mathrm{cm}^{3}$.

At.wt $; \mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16$.
M.wt $\mathrm{CH}_{3} \mathrm{COOH}=12 \mathrm{X} 2+4 \mathrm{X} 1+16 \mathrm{X} 2=60$

$$
\begin{aligned}
\mathrm{M} & =\frac{W t .}{M \cdot w t} \times \frac{1000}{V(m l)}= \\
& =\frac{80}{60} \times \frac{1000}{1000}=1.34 \text { mole } / \mathrm{L}
\end{aligned}
$$

$$
\mathrm{N}=\mathrm{nM} \longrightarrow \mathrm{~N}=1 \times 1.34 \longrightarrow \mathrm{~N}=1.34 \mathrm{eq} / \mathrm{L}
$$

$\mathrm{D}=\mathrm{wt} / \mathrm{V} \longrightarrow$ wt. of solution $=\mathrm{D} \times \mathrm{V}$
Wt. of solution $=1.099 \times 1000=1099 \mathrm{~g}$
$\mathrm{m}=\frac{W t}{M \cdot w t} x \frac{1000}{W t \cdot \text { solvent }}=$
wt.solution $=w t$. solute $+w t$ solvent
$\mathrm{m}=\frac{80}{60} \times \frac{1000}{1099-80}=1.32 \mathrm{~mole} / \mathrm{Kg}$

$$
\mathrm{W} / \mathrm{W} \%=\frac{w t \text { solute }}{\text { wt of solution }} \times 100
$$

$$
W / W \%=\frac{80}{1099} \times 100=7.27 \%
$$

Q22/50 grams of solution of $25 \%(\mathrm{w} / \mathrm{w})$ is mixed with 43 gm of $35 \%(\mathrm{w} / \mathrm{w})$ of sodium chloride calculate the new percentage concentration.

$$
\begin{aligned}
\%= & 100 \\
& 50 \quad \times \\
& X=50 \times 25 / 100=12.5 \mathrm{~g} \\
\%= & 100 \quad 35 \\
& 43 \quad \times \\
X= & 43 \times 35 / 100=15 \mathrm{~g} \\
\%= & \{12.5+15 / 43+50\} \times 100 \% \\
= & 29.59 \%
\end{aligned}
$$

Q23/ Calculate the Molar concentration for the sulfuric acid that contain 4.9 gm in 400 ml .
$\{$ The molecular weight(M.wt) of sulfuric acid $=98\}$
$\mathrm{M}=\frac{w t}{M \cdot w t} \times \frac{1000}{v m l}=\frac{4.9}{98} \times \frac{1000}{400}=0.125 \mathrm{~mole} / \mathrm{L}$

Q24/ How many grams of silver nitrate are needed for preparing a solution has a concentration of 0.125 M in 500ml.

$$
\begin{aligned}
W \mathrm{t}(\mathrm{~g})= & \mathrm{M} \times \text { M.wt } \times \frac{V}{1000}= \\
& =0.125 \times 169.9 \times \frac{500}{1000}=10.62 \mathrm{~g}
\end{aligned}
$$

Q25/ How many melimoles of a solute dissolved in a solution of 150 ml has a concentration of 0.025 M .

No.of melimoles $=\mathrm{M} \mathrm{X} \mathrm{V}$

$$
=0.025 \times 150=3.75 \text { melimoles }
$$

Q26/ How many grams of sodium sulfate which is needed for preparing 200 ml of a solution has a concentration of 0.5 Normal.
(M.wt $\mathrm{Na}_{2} \mathrm{SO}_{4}=142$)

Eq.wt $=\frac{M \cdot W t}{n}=\frac{142}{2}=71$

$$
\begin{aligned}
& \mathrm{N}=\frac{W t}{E q \cdot w t} \times \frac{1000}{V(m l)}= \\
& 0.5=\frac{W t}{71} \times \frac{1000}{200} \\
& \mathrm{Wt}=0.5 \times 71 \frac{200}{1000}=7.1 \mathrm{~g} .
\end{aligned}
$$

Q27/ calculate the Normal concentration for a solution contain 2 equavilant weight for a substance in one liter .
$\mathrm{N}=\frac{N O . E q}{V(L)} \rightarrow \mathrm{No.Eq}=\frac{W t}{E q . w t} \rightarrow \mathrm{~N}=\frac{w t}{E q . w t} \times V(L)=$
$N=\frac{2}{1 L}=2 \mathrm{eq} / \mathrm{L}$
Q28 / prepare 0.1 N and 0.1 M concentration for sulfuric acid in 250 ml .

NOTE/ M.wt $\mathrm{H}_{2} \mathrm{SO}_{4}=98$, Density $=1.09$, percentage concentration $=98 \%$

Eq.wt $=\frac{M \cdot w t}{n}=\frac{98}{2}=49$

$$
\mathrm{N}=\frac{10 \times P \times d}{E q \cdot w t}=\frac{10 \times 98 \times 1.09}{49}=21.8 \mathrm{Eq} / \mathrm{L}
$$

$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}$
$21.8 \times V_{1}=0.1 \times 250$
$\mathrm{V}_{1}=\frac{0.1 \mathrm{X250}}{21.8}=1.147 \mathrm{ml}$
$\mathrm{M}=\frac{10 \times P \mathrm{Xd}}{M . w t}=\frac{10 \times 98 \times 1.09}{98}=10.9 \mathrm{~mole} / \mathrm{L}$.
$M_{1} V_{1}=M_{2} V_{2}$
$10.9 \times \mathrm{V}_{1}=0.1 \times 250$
$\mathrm{V}_{1}=2.294 \mathrm{ml}$

Q29/ Calculate the Normal and Molar concentration for solution contain 3.3 grams of hydrated sodium carbonate $\left(\left(\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}\right)\right.$ in 15 ml

NOTE/ M.wt of $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}\right)=286 \mathrm{~g} / \mathrm{mole}$

$$
\begin{aligned}
& \text { M.wt }=286 \\
& \text { Eq. } \mathrm{wt}=286 / 2=143 \\
& \mathrm{~N}=\frac{w t}{E q \cdot w t} \times \frac{1000}{v}= \\
& \quad=\frac{3.3}{143} \times \frac{1000}{15}=1.54 \mathrm{Eq} \cdot \mathrm{~L} \\
& \mathrm{M}=\frac{N}{n}=\frac{1.54}{2}=0.77 \mathrm{~mole} / \mathrm{L}
\end{aligned}
$$

